376 lines
13 KiB
C
376 lines
13 KiB
C
/* PIKA - Photo and Image Kooker Application
|
|
* a rebranding of The GNU Image Manipulation Program (created with heckimp)
|
|
* A derived work which may be trivial. However, any changes may be (C)2023 by Aldercone Studio
|
|
*
|
|
* Original copyright, applying to most contents (license remains unchanged):
|
|
* Copyright (C) 1995 Spencer Kimball and Peter Mattis
|
|
*
|
|
* pikacoords-interpolate.c
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <glib-object.h>
|
|
|
|
#include "libpikamath/pikamath.h"
|
|
|
|
#include "core-types.h"
|
|
|
|
#include "pikacoords.h"
|
|
#include "pikacoords-interpolate.h"
|
|
|
|
|
|
/* Local helper functions declarations*/
|
|
static void pika_coords_interpolate_bezier_internal (const PikaCoords bezier_pt[4],
|
|
const gdouble start_t,
|
|
const gdouble end_t,
|
|
const gdouble precision,
|
|
GArray *ret_coords,
|
|
GArray *ret_params,
|
|
gint depth);
|
|
static gdouble pika_coords_get_catmull_spline_point (const gdouble t,
|
|
const gdouble p0,
|
|
const gdouble p1,
|
|
const gdouble p2,
|
|
const gdouble p3);
|
|
|
|
/* Functions for bezier subdivision */
|
|
|
|
void
|
|
pika_coords_interpolate_bezier (const PikaCoords bezier_pt[4],
|
|
const gdouble precision,
|
|
GArray *ret_coords,
|
|
GArray *ret_params)
|
|
{
|
|
g_return_if_fail (bezier_pt != NULL);
|
|
g_return_if_fail (precision >= 0.0);
|
|
g_return_if_fail (ret_coords != NULL);
|
|
|
|
pika_coords_interpolate_bezier_internal (bezier_pt,
|
|
0.0, 1.0,
|
|
precision,
|
|
ret_coords, ret_params, 10);
|
|
}
|
|
|
|
/* Recursive subdivision helper function */
|
|
static void
|
|
pika_coords_interpolate_bezier_internal (const PikaCoords bezier_pt[4],
|
|
const gdouble start_t,
|
|
const gdouble end_t,
|
|
const gdouble precision,
|
|
GArray *ret_coords,
|
|
GArray *ret_params,
|
|
gint depth)
|
|
{
|
|
/*
|
|
* bezier_pt has to contain four PikaCoords with the four control points
|
|
* of the bezier segment. We subdivide it at the parameter 0.5.
|
|
*/
|
|
|
|
PikaCoords subdivided[8];
|
|
gdouble middle_t = (start_t + end_t) / 2;
|
|
|
|
subdivided[0] = bezier_pt[0];
|
|
subdivided[6] = bezier_pt[3];
|
|
|
|
/* if (!depth) g_printerr ("Hit recursion depth limit!\n"); */
|
|
|
|
pika_coords_average (&bezier_pt[0], &bezier_pt[1], &subdivided[1]);
|
|
pika_coords_average (&bezier_pt[1], &bezier_pt[2], &subdivided[7]);
|
|
pika_coords_average (&bezier_pt[2], &bezier_pt[3], &subdivided[5]);
|
|
|
|
pika_coords_average (&subdivided[1], &subdivided[7], &subdivided[2]);
|
|
pika_coords_average (&subdivided[7], &subdivided[5], &subdivided[4]);
|
|
pika_coords_average (&subdivided[2], &subdivided[4], &subdivided[3]);
|
|
|
|
/*
|
|
* We now have the coordinates of the two bezier segments in
|
|
* subdivided [0-3] and subdivided [3-6]
|
|
*/
|
|
|
|
/*
|
|
* Here we need to check, if we have sufficiently subdivided, i.e.
|
|
* if the stroke is sufficiently close to a straight line.
|
|
*/
|
|
|
|
if (! depth ||
|
|
pika_coords_bezier_is_straight (subdivided, precision)) /* 1st half */
|
|
{
|
|
g_array_append_vals (ret_coords, subdivided, 3);
|
|
|
|
if (ret_params)
|
|
{
|
|
gdouble params[3];
|
|
|
|
params[0] = start_t;
|
|
params[1] = (2 * start_t + middle_t) / 3;
|
|
params[2] = (start_t + 2 * middle_t) / 3;
|
|
|
|
g_array_append_vals (ret_params, params, 3);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
pika_coords_interpolate_bezier_internal (subdivided,
|
|
start_t, (start_t + end_t) / 2,
|
|
precision,
|
|
ret_coords, ret_params,
|
|
depth - 1);
|
|
}
|
|
|
|
if (! depth ||
|
|
pika_coords_bezier_is_straight (subdivided + 3, precision)) /* 2nd half */
|
|
{
|
|
g_array_append_vals (ret_coords, subdivided + 3, 3);
|
|
|
|
if (ret_params)
|
|
{
|
|
gdouble params[3];
|
|
|
|
params[0] = middle_t;
|
|
params[1] = (2 * middle_t + end_t) / 3;
|
|
params[2] = (middle_t + 2 * end_t) / 3;
|
|
|
|
g_array_append_vals (ret_params, params, 3);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
pika_coords_interpolate_bezier_internal (subdivided + 3,
|
|
(start_t + end_t) / 2, end_t,
|
|
precision,
|
|
ret_coords, ret_params,
|
|
depth - 1);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Returns the position and/or velocity of a Bezier curve at time 't'.
|
|
*/
|
|
|
|
void
|
|
pika_coords_interpolate_bezier_at (const PikaCoords bezier_pt[4],
|
|
gdouble t,
|
|
PikaCoords *position,
|
|
PikaCoords *velocity)
|
|
{
|
|
gdouble u = 1.0 - t;
|
|
|
|
g_return_if_fail (bezier_pt != NULL);
|
|
|
|
if (position)
|
|
{
|
|
PikaCoords a;
|
|
PikaCoords b;
|
|
|
|
pika_coords_mix ( u * u * u, &bezier_pt[0],
|
|
3.0 * u * u * t, &bezier_pt[1],
|
|
&a);
|
|
pika_coords_mix (3.0 * u * t * t, &bezier_pt[2],
|
|
t * t * t, &bezier_pt[3],
|
|
&b);
|
|
|
|
pika_coords_add (&a, &b, position);
|
|
}
|
|
|
|
if (velocity)
|
|
{
|
|
PikaCoords a;
|
|
PikaCoords b;
|
|
|
|
pika_coords_mix (-3.0 * u * u, &bezier_pt[0],
|
|
3.0 * (u - 2.0 * t) * u, &bezier_pt[1],
|
|
&a);
|
|
pika_coords_mix (-3.0 * (t - 2.0 * u) * t, &bezier_pt[2],
|
|
3.0 * t * t, &bezier_pt[3],
|
|
&b);
|
|
|
|
pika_coords_add (&a, &b, velocity);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* a helper function that determines if a bezier segment is "straight
|
|
* enough" to be approximated by a line.
|
|
*
|
|
* To be more exact, it also checks for the control points to be distributed
|
|
* evenly along the line. This makes it easier to reconstruct parameters for
|
|
* a given point along the segment.
|
|
*
|
|
* Needs four PikaCoords in an array.
|
|
*/
|
|
|
|
gboolean
|
|
pika_coords_bezier_is_straight (const PikaCoords bezier_pt[4],
|
|
gdouble precision)
|
|
{
|
|
PikaCoords pt1, pt2;
|
|
|
|
g_return_val_if_fail (bezier_pt != NULL, FALSE);
|
|
g_return_val_if_fail (precision >= 0.0, FALSE);
|
|
|
|
/* calculate the "ideal" positions for the control points */
|
|
|
|
pika_coords_mix (2.0 / 3.0, &bezier_pt[0],
|
|
1.0 / 3.0, &bezier_pt[3],
|
|
&pt1);
|
|
pika_coords_mix (1.0 / 3.0, &bezier_pt[0],
|
|
2.0 / 3.0, &bezier_pt[3],
|
|
&pt2);
|
|
|
|
/* calculate the deviation of the actual control points */
|
|
|
|
return (pika_coords_manhattan_dist (&bezier_pt[1], &pt1) < precision &&
|
|
pika_coords_manhattan_dist (&bezier_pt[2], &pt2) < precision);
|
|
}
|
|
|
|
|
|
/* Functions for catmull-rom interpolation */
|
|
|
|
void
|
|
pika_coords_interpolate_catmull (const PikaCoords catmull_pt[4],
|
|
gdouble precision,
|
|
GArray *ret_coords,
|
|
GArray *ret_params)
|
|
{
|
|
gdouble delta_x, delta_y;
|
|
gdouble distance;
|
|
gdouble dir_step;
|
|
gdouble delta_dir;
|
|
gint num_points;
|
|
gint n;
|
|
|
|
PikaCoords past_coords;
|
|
PikaCoords start_coords;
|
|
PikaCoords end_coords;
|
|
PikaCoords future_coords;
|
|
|
|
g_return_if_fail (catmull_pt != NULL);
|
|
g_return_if_fail (precision > 0.0);
|
|
g_return_if_fail (ret_coords != NULL);
|
|
|
|
delta_x = catmull_pt[2].x - catmull_pt[1].x;
|
|
delta_y = catmull_pt[2].y - catmull_pt[1].y;
|
|
|
|
/* Catmull-Rom interpolation requires 4 points.
|
|
* Two endpoints plus one more at each end.
|
|
*/
|
|
|
|
past_coords = catmull_pt[0];
|
|
start_coords = catmull_pt[1];
|
|
end_coords = catmull_pt[2];
|
|
future_coords = catmull_pt[3];
|
|
|
|
distance = sqrt (SQR (delta_x) + SQR (delta_y));
|
|
|
|
num_points = distance / precision;
|
|
|
|
delta_dir = end_coords.direction - start_coords.direction;
|
|
|
|
if (delta_dir <= -0.5)
|
|
delta_dir += 1.0;
|
|
else if (delta_dir >= 0.5)
|
|
delta_dir -= 1.0;
|
|
|
|
dir_step = delta_dir / num_points;
|
|
|
|
for (n = 1; n <= num_points; n++)
|
|
{
|
|
PikaCoords coords = past_coords; /* Make sure we carry over things
|
|
* we do not interpolate */
|
|
gdouble velocity;
|
|
gdouble pressure;
|
|
gdouble p = (gdouble) n / num_points;
|
|
|
|
coords.x =
|
|
pika_coords_get_catmull_spline_point (p,
|
|
past_coords.x,
|
|
start_coords.x,
|
|
end_coords.x,
|
|
future_coords.x);
|
|
|
|
coords.y =
|
|
pika_coords_get_catmull_spline_point (p,
|
|
past_coords.y,
|
|
start_coords.y,
|
|
end_coords.y,
|
|
future_coords.y);
|
|
|
|
pressure =
|
|
pika_coords_get_catmull_spline_point (p,
|
|
past_coords.pressure,
|
|
start_coords.pressure,
|
|
end_coords.pressure,
|
|
future_coords.pressure);
|
|
coords.pressure = CLAMP (pressure, 0.0, 1.0);
|
|
|
|
coords.xtilt =
|
|
pika_coords_get_catmull_spline_point (p,
|
|
past_coords.xtilt,
|
|
start_coords.xtilt,
|
|
end_coords.xtilt,
|
|
future_coords.xtilt);
|
|
coords.ytilt =
|
|
pika_coords_get_catmull_spline_point (p,
|
|
past_coords.ytilt,
|
|
start_coords.ytilt,
|
|
end_coords.ytilt,
|
|
future_coords.ytilt);
|
|
|
|
coords.wheel =
|
|
pika_coords_get_catmull_spline_point (p,
|
|
past_coords.wheel,
|
|
start_coords.wheel,
|
|
end_coords.wheel,
|
|
future_coords.wheel);
|
|
|
|
velocity = pika_coords_get_catmull_spline_point (p,
|
|
past_coords.velocity,
|
|
start_coords.velocity,
|
|
end_coords.velocity,
|
|
future_coords.velocity);
|
|
coords.velocity = CLAMP (velocity, 0.0, 1.0);
|
|
|
|
coords.direction = start_coords.direction + dir_step * n;
|
|
|
|
coords.direction = coords.direction - floor (coords.direction);
|
|
|
|
coords.xscale = end_coords.xscale;
|
|
coords.yscale = end_coords.yscale;
|
|
coords.angle = end_coords.angle;
|
|
coords.reflect = end_coords.reflect;
|
|
|
|
g_array_append_val (ret_coords, coords);
|
|
|
|
if (ret_params)
|
|
g_array_append_val (ret_params, p);
|
|
}
|
|
}
|
|
|
|
static gdouble
|
|
pika_coords_get_catmull_spline_point (const gdouble t,
|
|
const gdouble p0,
|
|
const gdouble p1,
|
|
const gdouble p2,
|
|
const gdouble p3)
|
|
{
|
|
return ((((-t + 2.0) * t - 1.0) * t / 2.0) * p0 +
|
|
((((3.0 * t - 5.0) * t) * t + 2.0) / 2.0) * p1 +
|
|
(((-3.0 * t + 4.0) * t + 1.0) * t / 2.0) * p2 +
|
|
(((t - 1) * t * t) / 2.0) * p3);
|
|
}
|